The Partial Derivative method in Arithmetic Circuit Complexity
نویسنده
چکیده
In this thesis we survey the technique of analyzing the partial derivatives of a polynomial to prove lower bounds for restricted classes of arithmetic circuits. The technique is also useful in designing algorithms for learning arithmetic circuits and we study the application of the method of partial derivatives in this setting. We also look at polynomial identity testing and survey an e cient algorithm for identity testing certain classes of arithmetic circuits. The dimension of the vector space of partial derivatives of a polynomial will be the quantity of interest in this thesis. Lower bounds for an explicit polynomial against a class of circuits is obtained by comparing the dimension of the space of partial derivatives of the polynomial and the dimension of the space of polynomials computed by that class of circuits. The e ciency of the learning algorithms that we survey also depends on the dimension of partial derivatives of the class of functions. We also note the connections between the problems of proving lower bounds, designing e cient learning algorithms and identity testing arithmetic circuits.
منابع مشابه
Efficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS
Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...
متن کاملEfficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS
Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...
متن کاملA Novel Design of Reversible Multiplier Circuit (TECHNICAL NOTE)
Adders and multipliers are two main units of the computer arithmetic processors and play an important role in reversible computations. The binary multiplier consists of two main parts, the partial products generation circuit (PPGC) and the reversible parallel adders (RPA). This paper introduces a novel reversible 4×4 multiplier circuit that is based on an advanced PPGC with Peres gates only. Ag...
متن کاملDesign and Simulation of a 2GHz, 64×64 bit Arithmetic Logic Unit in 130nm CMOS Technology
The purpose of this paper is to design a 64×64 bit low power, low delay and high speed Arithmetic Logic Unit (ALU). Arithmetic Logic Unit performs arithmetic operation like addition, multiplication. Adders play important role in ALU. For designing adder, the combination of carry lookahead adder and carry select adder, also add-one circuit have been used to achieve high speed and low area. In mu...
متن کاملOn the Complexity of Partial Derivatives
The method of partial derivatives is one of the most successful lower bound methods for arithmetic circuits. It uses as a complexity measure the dimension of the span of the partial derivatives of a polynomial. In this paper, we consider this complexity measure as a computational problem: for an input polynomial given as the sum of its nonzero monomials, what is the complexity of computing the ...
متن کامل